Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 527, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637351

RESUMEN

BACKGROUND: SnRK2 plays vital role in responding to adverse abiotic stimuli. The applicability of TaSnRK2.4 and TaSnRK2.9 was investigated to leverage the potential of these genes in indigenous wheat breeding programs. METHODS: Genetic diversity was assessed using pre-existing markers for TaSnRK2.4 and TaSnRK2.9. Furthermore, new markers were also developed to enhance their broader applicability. KASP markers were designed for TaSnRK2.4, while CAPS-based markers were tailored for TaSnRK2.9. RESULTS: Analysis revealed lack of polymorphism in TaSnRK2.4 among Pakistani wheat germplasm under study. To validate this finding, available gel-based markers for TaSnRK2.4 were employed, producing consistent results and offering limited potential for application in marker-assisted wheat breeding with Pakistani wheat material. For TaSnRK2.9-5A, CAPS2.9-5A-1 and CAPS2.9-5A-2 markers were designed to target SNP positions at 308 nt and 1700 nt revealing four distinct haplotypes. Association analysis highlighted the significance of Hap-5A-1 of TaSnRK2.9-5A, which exhibited association with an increased number of productive tillers (NPT), grains per spike (GPS), and reduced plant height (PH) under well-watered (WW) conditions. Moreover, it showed positive influence on NPT under WW conditions, GPS under water-limited (WL) conditions, and PH under both WW and WL conditions. High selection intensity observed for Hap-5A-1 underscores the valuable role it has played in Pakistani wheat breeding programs. Gene expression studies of TaSnRK2.9-5A revealed the involvement of this gene in response to PEG, NaCl, low temperature and ABA treatments. CONCLUSION: These findings propose that TaSnRK2.9 can be effectively employed for improving wheat through marker-assisted selection in wheat breeding efforts.


Asunto(s)
Resistencia a la Sequía , Triticum , Triticum/metabolismo , Genotipo , Fitomejoramiento , Pan , Proteínas de Plantas/genética
2.
Front Plant Sci ; 13: 956298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072320

RESUMEN

Food security is facing a major threat from salinity and there is a need to develop salt tolerant crop varieties to ensure that the demand for food from the world's increasing population is met. Salinity mostly occurs in arid and semi-arid regions. It may cause many adverse physiological effects on plants, i.e., toxic ion accumulation, disturbed osmotic potential, and decreased crop yield. The present study aimed to investigate the morphological, physiological, biochemical, and genetic parameters of wheat genotypes under salt stress. Six wheat genotypes were screened for salt tolerance at the seedling and maturity stage. Seeds were sown at 0 and 150 mM of salinity level. Biochemical traits, i.e., shoot/root fresh and dry weight, chlorophyll a/b and total chlorophyll contents, shoot nitrogen, shoot phosphorus, proline, and carbohydrates were measured. Wheat genotypes showed a significant increase in free amino acids, shoot nitrogen, and total soluble proteins under saline conditions. Higher Na+/K+ ratio and free amino acids were estimated under 150 mM NaCl treatment in Pasban-90 and found to be the most salt-tolerant genotype. By contrast, reduced proline, total chlorophyll, and Na+/K+ ratio were found in Kohistan-97 marking it to be sensitive to stress. Expression analysis of HKTs genes was performed to validate the results of two contrasting genotypes. The differential expression of HKT2; 1 and HKT2; 3 explained the tissue and genotype specific epigenetic variations. Our findings indicated that these selected genotypes can be further used for molecular studies to find out QTLs/genes related to salinity. This suggests that, in contrasting wheat genotypes, there is a differentially induced defense response to salt stress, indicating a functional correlation between salt stress tolerance and differential expression pattern in wheat.

3.
Environ Sci Pollut Res Int ; 29(21): 30967-30985, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35102510

RESUMEN

Several plant species such as grasses are dominant in many habitats including arid and semi-arid areas. These species survive in these regions by developing exclusive structures, which helps in the collection of atmospheric water. Before the collected water evaporates, these structures have unique canopy structure for water transportation that plays an equivalent share in the fog-harvesting mechanism. In this review, the atmospheric gaseous water harvesting mechanisms and their affinity of measurements were discussed. Morphological adaptations and their role in the capturing of atmospheric gaseous water of various species were also discussed. The key factor for the water collection and its conduction in the wheat plant is the information of contact angle hysteresis. In wheat, leaf rolling and its association with wetting property help the plant in water retention. Morphological adaptations, i.e., leaf erectness, grooves, and prickle hairs, also help in the collection and acquisition of water droplets by stem flows in directional guide toward the base of the plant and allow its rapid uptake. Morphological adaptation strengthens the harvesting mechanism by preventing the loss of water through shattering. Thus, wheat canopy architecture can be modified to harvest the atmospheric water and directional movement of water towards the root zone for self-irrigation. Moreover, these morphological adaptations are also linked with drought avoidance and corresponding physiological processes to resist water stress. The combination of these traits together with water use efficiency in wheat contributes to a highly efficient atmospheric water harvesting system that enables the wheat plants to reduce the cost of production. It also increases the yielding potential of the crop in arid and semi-arid environments. Further investigating the ecophysiology and molecular pathways of these morphological adaptations in wheat may have significant applications in varying climatic scenarios.


Asunto(s)
Hojas de la Planta , Triticum , Adaptación Fisiológica , Sequías , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...